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Based on molecular grand canonical ensemble density functional theory, we present a theoretical description
of how reaction barriers and enthalpies change as atoms in the system are subjected to alchemical transforma-
tions, from one element into another. The change in the energy barrier for the umbrella inversion of ammonia
is calculated along an alchemical path in which the moleculeis transformed into water, and the change in the
enthalpy of protonation for methane is calculated as the molecule is transformed into a neon atomvia ammonia,
water, and hydrogen fluoride. Alchemical derivatives are calculated analytically from the electrostatic potential
in the unperturbed system, and compared to numerical derivatives calculated with finite difference interpolation
of the pseudopotentials for the atoms being transformed. Good agreement is found between the analytical and
numerical derivatives. Alchemical derivatives are also shown to be predictive for integer changes in atomic num-
bers for oxygen binding to a 79-atom palladium nanoparticle, illustrating their potential use in gradient-based
optimization algorithms for the rational design of catalysts.

I. INTRODUCTION

Chemical compound space (CCS) can be defined as the set
of all combinations of chemical elements in all geometric iso-
mers. Combinatorial exploration of CCS has been used to pro-
duce large virtual chemical databases [1, 2] which would then
need to be searched to find the compound with the property
of interest [3–5]. More efficient approaches to search CCS
include simulated annealing [6], genetic algorithms [7], clus-
ter expansions that can be combined with density functional
theory [8], optimizations based on alchemical gradients [9–
12], or various optimization methods in the coefficient space
of linear combinations of atomic potentials [13–18].

The energetics of chemical reactions that involve geomet-
rical changes are relevant for many important phenomena. In
this study, we address the effect of varying stoichiometry on
properties which are explicitly geometry dependent, such as
activation barriers or reaction enthalpies.

First, we have studied the effect of alchemical transforma-
tion for simple molecular model systems, for which we can
easily assess accuracy and demonstrate numerical feasibility.

TABLE I: Investigated properties, reaction enthalpies∆H and energy
barriers Eact, and chemical species connected by alchemical paths
via the order parameterλ. (0≤ λ ≤ 1)

λ=0 λ=1 property

CH4 NH3 ∆H

NH3 H2O ∆H, Eact

H2O HF ∆H

HF Ne ∆H

∗Electronic address:henkelman@mail.utexas.edu
†Electronic address:oavonli@sandia.gov

In particular, we choose a subset of CCS including only sta-
ble compounds containing 10 protons and electrons, such as
CH4, where a central atom is saturated with hydrogens. Table
I shows the alchemical paths and properties which have been
investigated. Reaction protonation enthalpies along the four
continuous transformations, CH4 → NH3 → H2O → HF →
Ne, have been computed, as well as the activation energy for
the umbrella flipping of ammonia as it is continuously trans-
formed into a water molecule. Analytical alchemical deriva-
tives along each stoichiometrical transformation were calcu-
lated and compared to their finite difference analogue.

Secondly, we examine alchemical derivatives for the bind-
ing energy of oxygen to a nanoparticle. It has been shown by
Nørskov and coworkers [19] that the binding energy of oxy-
gen to a metal surface can be used to predict its catalytic ac-
tivity for the oxygen reduction reaction. This reaction is im-
portant because it limits the kinetics in fuel cell cathodes. We
show how alchemical derivatives can be used to navigate the
CCS of nanoparticles to tune the oxygen binding energy.

In these examples, we show how analytic alchemical
derivatives, which can be evaluated from single point energy
calculations, are consistent with finite difference derivatives
calculated from interpolation of the pseudopotentials. We
also show how well the analytic derivatives are for predicting
changes in binding energies and barriers over integer changes
in atomic numbers. This is particularly important for the use
of alchemical derivatives in gradient based optimization of
material properties.

II. THEORY

A. Taylor expansion in chemical space

Free energy differences can be evaluated between any two
distinct thermodynamic states through thermodynamic inte-
gration [20, 21], and variants of it, such as free energy pertur-
bation methods [22]. Typically, an order parameter,λ, is used



to drive the system from one state to the other. Integration over
the statistical mechanical ensemble averages of the force over
λ yields the free energy difference between the two states. In
the same way, we use hereλ to express a compound’s poten-
tial energy as a Taylor expansion in CCS around a reference
compound, whereλ = 0 and the energy isE0. The energy of
any other compound, for whichλ = 1, is approximated as

E(λ = 1) = E0 + ∂λE0 dλ +
1
2

∂2
λE0 dλ2 +HOT (1)

where dλ = 1, ∂λE denotes the derivative ofE with respect to
λ and HOT are the higher order terms.

Within density functional theory (DFT) [23], a compound
is defined by its proton density distribution,Z(r), and the
number of electrons Ne which—after the self-consistent field
cycle—yield the ground state electron density,ρ. These quan-
tities constitute the extensive particle variables withinmolec-
ular grand canonical DFT [10]. Since we explicitly focus on
compounds with different geometries it is now convenient to
include the positions of the nuclei{RI} in the set of extensive
variables, assuming the conventional classical point charge
distribution of atomic numbers,Z(r) = ∑I NI δ(RI − r), where
NI is the atomic number of atomI .

Consequently, the first order term from Eq. (1) is

∂λE =

Z

dr δZ(r)E ∂λZ(r)+∑
I

∂RI E ·∂λRI

+∂NeE ∂λNe

=
Z

dr µn(r) ∂λZ(r)−∑
I

FI ·∂λRI

+µe ∂λNe. (2)

The nuclear chemical potential,δZ(r)E = µn(r), is the deriva-
tive of the energy with respect to variation in the nuclear
charge distribution. At the position of atomI , µn(RI ) is the
derivative of the energy with respect to the nuclear charge
Z(RI ). It is therefore called the “alchemical potential.” The
ionic forces,{FI}, are the negative gradients of the energy
with respect to atomic position. The electronic chemical po-
tential µe is the derivative of the energy with respect to a
change in Ne, i.e. the molecular eigenvalue of the highest oc-
cupied molecular Kohn-Sham orbital [24, 25].

Analogously, the second order term from Eq. (1) can
be obtained, and contains all the pure and mixed sec-
ond order derivatives such as: the alchemical hardness
δZ(r)δZ(r ′)E = δZ(r ′)µn(r) = ηn(r , r ′); the electronic hardness,
∂Ne∂NeE = ∂Neµe = ηe; and the Hessian matrix,∂RI ∂RJE =
∂RJFI = κIJ ; the “force Fukui” function δZ(r)∂RI E =
−δZ(r)FI = ∂RI µn(r) = ff (RI , r); the molecular Fukui func-
tion ∂NeδZ(r)E = ∂Neµn(r) = δZ(r)µe = fm(r); and the nuclear
Fukui function∂Ne∂RI E = −∂NeFI = ∂RI µe = fn(RI ).

The (arbitrary) path alongλ can be chosen to simplify the
number of terms in Eq. (2). For the small molecules in the
first part of this study, we have chosen to relax the geometry
of the molecule alongλ so thatE(λ) is minimal with respect
to geometrical variation, and the term containingF vanishes.
Furthermore, we restrict ourselves to alchemical transforma-

tions with a constantNe equal to 8 valence electrons (iso-
electronic). For such paths Eq. (2) reduces to

∂λE =

Z

dr µn(r) ∂λZ(r). (3)

The alchemical derivative of Eq. (3) describes the change in
energy along the pathλ as the integral over the change in pro-
ton density,Z(r), times the nuclear chemical potential,µn(r).

B. Alchemical derivatives

The nuclear chemical potential,µn(r), was derived in
Ref. 10 as an electrostatic potential,

µn(r) =
Z

dr ′
Z(r ′)erf(σ|r − r ′|)−ρ(r ′)

|r − r ′|
(4)

modified with an error function to switch off intra-nuclear in-
teractions. This switching function is required for anyr for
which Z(r) > 0, i.e. at an atomic centerRI . At this point,
proton density would be added to an existing nucleus, diverg-
ing the electrostatic interaction. In principle, choosinga small
value ofσ will eliminate such divergences from the integral.
In practice, the nuclear charge atRI is simply excluded from
the evaluation ofµn(RI ).

Changing the proton density at the nuclei is of particu-
lar interest because this changes an atom from one element
to another. The corresponding molecular nuclear alchemical
derivative can be defined as the sum over the product of al-
chemical potentials with changes in atomic number,

∂λE = ∑
I

µn(RI ) ∂λNI . (5)

The focus of this work is to calculate the alchemical derivative
of an energy difference,∆E = Eb−Ea, between two molec-
ular geometries{Ra

I } and{Rb
I }. This can be written in terms

of a difference in the nuclear chemical potential,

∂λ∆E =

Z

dr ∆µn(r) ∂λZ(r), (6)

where∆µn(r) = µb
n(r)−µa

n(r). In the special case that all nu-
clei have the same position in moleculesa andb, so{Ra

I } =

{Rb
I } = {RI}, the alchemical potential difference reduces ac-

cording to Eq. 4 to

∆µn(RI ) = µb
n(RI )−µa

n(RI )

= −

Z

dr
ρb(r)−ρa(r)

|RI − r |
(7)

whereρa(r) andρb(r) are the electronic charge densities in
moleculesa andb respectively.

C. Varying molecular geometries

Here we are interested in energy differences between
molecules with different geometries, where{Ra

I } 6= {Rb
I }.
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FIG. 1: (A) Activation energies are calculated as the energydiffer-
ence between two geometries; the corresponding alchemicalderiva-
tive at atomI is defined in Eq. 9. (B) In a dissociation reaction where
atomI is only present in the reactant and product spacea andb′, re-
spectively, spaceb′′ does not contribute to the alchemical derivative
∆µn,I .

When the position of nucleusI changes, the alchemical po-
tential difference can no longer be defined at the position of
the nucleus as∆µn(RI ). Instead, we use the index of the nu-
cleus,I , to identify the alchemical potential difference,

∆µn,I = µb
n(R

b
I )−µa

n(R
a
I ), (8)

and the derivative of the energy difference alongλ is

∂λ∆E = ∑
I

∆µn,I ∂λNI . (9)

D. Activation and protonation energies

Two examples of reaction energetics involving molecules
of different geometries are illustrated schematically in Fig. 1,
an activation energy (A) and a protonation energy (B). The
activation energy is the energy difference between two ge-
ometries, the initial state{Rinit

I } and the transition state{Rts
I },

Eact = Ets−Einit. Its derivative along the pathλ is

∂λEact = ∑
I

µact
n,I ∂λNI , (10)

whereµact
n,I = µts

n (Rts
I )−µinit

n (Rinit
I ).

The reaction energyErxn and its alchemical potential at
atomI , µrxn

n,I , are defined in analogy, substituting the final state
for the transition state. In this work, we chose the protonation
of a molecule as the reaction energy to be calculated,

Eprot = Emol+H+
−Emol−EH+

. (11)

This is illustrated in Fig. 1(B) wherea is the protonated
molecule andb contains both the isolated molecule (b′) and
proton (b′′). When the molecular geometry is relaxed, the
alchemical derivatives at the atoms can be calculated using
Eq. (8) and the derivative ofEprot alongλ using Eq. (9). If the

geometry of the molecule is held fixed, the alchemical poten-
tial is defined everywhere in space

µprot
n (r) = δZ(r)E

prot (12)

= µmol+H+

n (r)−µmol
n (r)−µH+

n (r)

Note that this expression describes the energy of adding pro-
ton density anywhere in space, not just at existing atoms.
There is, however, a subtlety in Eq. (12) related to how re-
action energies are calculated with DFT. The three terms in
Eq. (11) are calculated separately as illustrated in Fig. 1(B).
Even though the atoms are fixed in space,µmol

n (r) andµH+

n (r)
are calculated in the difference spacesb′ and b′′; they do
not share the same coordinate,r . To calculate an alchemi-
cal change in the energy one must decide in which space the
change occurs,rmol or rH+

. If the change is inrmol thenµH+

n
vanishes in Eq. (12).

E. Alchemical derivatives via finite difference

Eq. (5) can be written as a finite difference derivative,

∆E
∆λ

= ∑
I

∆E
∆NI

∆NI

∆λ
. (13)

Note here that∆E is a change in energy with respect toλ and
not a change with respect to geometry, as in Eq. (6). In stan-
dard electronic structure calculations the atomic numbersNI
are integers. The alchemical potential,∆E/∆NI could be eval-
uated with integerNI , but we are interested in using a smaller
(non-integer) finite difference step size in order to numerically
verify the analytic derivative from Eq. (4). To this end we
choose to represent an atom with a fractional atomic number
by a pseudopotential that is linearly interpolated betweenthe
atoms of nearest integer atomic numbers. For example, an
atom which is fractionally higher by an amountf than the
atomic species with integer atomic numberN, the pseudopo-
tential is interpolated as

VPP
N+ f = (1− f )VPP

N + f VPP
N+1. (14)

With interpolated pseudopotentials we can calculate bothE
andµn,I at any non-integer value ofNI and thus the finite dif-
ference derivatives for any value ofλ along an alchemical
transition. Energies were calculated along paths,λ ∈ [0,1],
in increments of 0.1. Finite difference alchemical derivatives
were taken at these points using central difference with a step
size of∆λ = 0.005.

III. COMPUTATIONAL DETAILS

DFT [23, 26] calculations were preformed using the gen-
eralized gradient approximated exchange-correlation poten-
tial PBE [27], as implemented in Viennaab initio simulation
package, VASP [28, 29]. Core electrons were represented us-
ing the projector augmented wave method [30, 31]; valence



electrons with a plane wave basis set up to an energy cut-
off of 400 eV. A cubic cell of dimension 10̊A was used for
molecules and 20̊A for nanoparticles. Geometry relaxation
was continued until the force dropped below 0.01 eV/Å for
each atom. In VASP charged cells are with a uniform back-
ground counter-charge.

Analytical alchemical potentials were evaluated from
Eq. (4) on a uniform grid with 20-30 points/Å using the elec-
trostatic potential output. To reduce finite grid-based errors
when taking differences such as in Eq. (8) the position of the
atomsRa

I andRb
I were translated to the same position on the

grid.
A calculation of∂λE requires a path of alchemical transfor-

mationNI (λ) connecting the initial and final atomic number
Na

I andNb
I . We have chosen paths in which theNI vary lin-

early inλ,

NI (λ) = (1−λ) Na
I + λ Nb

I . (15)

This choice is convenient because the derivative is a constant
along the path,

∂λNI (λ) = ∂λNI = Nb
I −Na

I , (16)

and depends only on the endpoints.

IV. RESULTS AND DISCUSSION

Two test cases are used to verify that the analytic alchemi-
cal derivatives are consistent with numerical finite difference
derivatives of the pseudopotentials. First, the umbrella flip-
ping of ammonia is used to test the change in activation ener-
gies. Then, second, the protonation of small molecules is used
to test derivatives in reaction enthalpies for both frozen and
relaxed geometries. In both cases, there is good agreement
between the analytical and numerical alchemical derivatives.
Finally, we show a more interesting example of oxygen bind-
ing to a palladium nanoparticle. This final case is motivatedby
Nørskov and coworkers who showed that the binding energy
of oxygen to a metal surface correlates to its catalytic activity
for the oxygen reduction reaction [19]. Here, we test the pre-
dictive power of the alchemical derivatives for integer changes
in the atomic number of the metal atoms in the nanoparticle,
and show that the derivatives can be used to tune the binding
energy of oxygen with respect to the particle composition.

A. Activation energies

The energy barrier is a geometry dependent property where
the configurations of the transition state and initial statediffer
and as such explicitly requires the nuclei mapping described
in Eq. 8 to calculate the alchemical potential. We have calcu-
lated the barrier for the umbrella flipping of ammonia. NH3
has two degenerate energy minima, a pyramidal structure with
C3h symmetry and its mirror plane conformer. Figure 2(A)
shows a nudged elastic band [32, 33] calculation of the flip-
ping barrier with a planar transition state and an activation
energy of 0.21 eV.
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FIG. 2: (A) The minimum energy path for the umbrella inversion of
NH3 passes through a planar transition state. This path is shownfor
several values ofλ, where NH3 (λ = 0) is alchemically transformed
to H2O (λ = 1). (B) Eact for the inversion process as a function ofλ.
The structures of the transition states are shown for selectvalues of
λ.

We are interested in how the flipping barrier changes as
we alchemically transform NH3 into a different molecule –
H2O in this example. Water was chosen in part because it is
a neighbor to ammonia in the alchemical space of molecules
with unit changes in atomic numbers, and also because the
flipping process for H2O becomes a rotation with no energy
barrier. This provides a convenient test case for the calcula-
tion of activation energies and the corresponding derivatives
along an alchemical transformation where in the limit ofλ →
1, Eact is knowna priori to be zero.

The alchemical transformation is defined byλ going from 0
to 1 as NH3 is mutated to H2O. We have chosen the transfor-
mation to correspond to the simultaneous addition of a proton
the central atom and the annihilation of a H nucleus, linearly,
as defined in Eq. (15). Figure 2(B) shows how the activation
energy for the inversion barrier of NH3 first decreases only
slightly, then decays more rapidly, and finally vanishes as the
molecule is transformed into H2O.

The usefulness of alchemical derivatives for compound de-
sign can be measured by how well they can extrapolate to in-
teger changes inNI , corresponding to elements which exist in
nature. For the alchemical transformation between NH3 and
H2O, the{NI} change linearly inλ [Eq. (15)], but the prop-
erty, Eact has significant curvature alongλ. In Fig. 2(B), one
can see how the linear extrapolation based on the derivativeof
Eact with respect toλ at H2O would yield a reasonable pre-
diction for the barrier of NH3, whereas the derivative at NH3
would significantly overestimate the flipping barrier at H2O.
Current efforts aim to determine alchemical paths that have
first order derivatives that are more amenable to extrapolations
to new compounds [12].

In previous work, relaxation of the force{FI} for points
alongλ was only done for one structure because of the con-
straint,{Ra

I } = {Rb
I } [34]. Using Eq. (8), this constraint is

lifted, and the structures are relaxed independently. The most
prominent geometry change of both the transition state and the
initial state as ammonia is converted to water alongλ, is the
bond-length between the central atom and the hydrogen being
annihilated. Figure 3 shows that the bond-length increasesat



λ

0.0 0.2 0.4 0.6 0.8

1.0

1.1

1.2

1.3

bo
nd

 le
ng

th
 (

Å
)

init
ts

λ=0.3

λ=0.5

λ=0.7

λ=0.0

λ=0.0 λ=0.3
λ=0.5

λ=0.7

N

N

1.0

λ=1.0

O

FIG. 3: The bond distance between the central atom and the hydro-
gen being annihilated increases alongλ for both the relaxed initial
structure{Rinit

I } and the relaxed transition state{Rts
I } for the um-

brella flipping process.

CH4 + H+

N O F NeC

NH3 + H+ H2O + H+ HF + H+ Ne + H+

FIG. 4: Isosurfaces of the alchemical potentialµprot
n (r) = 7 eV from

Eq. (12) are shown for the protonated methane series using geome-
tries fixed to NH+

4 .

the same rate for both the optimized initial state and the con-
verged transition state. As the bond lengthens, the interaction
between the fractional proton and the rest of the molecule de-
creases until it vanishes atλ = 1.

B. Protonation energies

The second geometry-dependent property we discuss is the
protonation energy for a set of iso-electronic molecules, CH4,
NH3, H2O, HF, and Ne. In the case of CH4, for exam-
ple, the protonation energy defined in Eq. (11) isEprot =

ECH4+H+
−ECH4 −EH+

. The choice of this property is moti-
vated by the fact that it can be evaluated both for frozen and
relaxed geometries, allowing to measure the effect of geome-
try relaxation when calculating alchemical derivatives.

1. Fixed geometries

In the case of fixed geometries we chose the relaxed NH+
4

structure as the common structure for all of the molecules. For
different molecules, such as H2O, the central atom, O, was
located at the N position and the two hydrogen atoms were in
two of the four equivalent H positions. In the case of CH+

5 an
extra hydrogen atom was relaxed in the fixed NH+

4 structure,
and then kept fixed for its alchemical transformation.

With fixed geometries the alchemical potential for protona-
tion is defined over all space according to Eq. (12). This is
a useful function because it shows where a new atom should
be added to change a desired property—in this case the pro-
tonation energy. Figure 4 shows isosurfaces of the alchemical
potentialµprot

n (r) for all the five compounds. Inside each of
these surfaces, the change in energy is over 7 eV/proton for the
molecule shown as compared to the de-protonated molecule
without the uppermost proton. We note some features of the
alchemical potential. First, the potential is very high around
the uppermost proton because this is the proton which was
added to calculate the protonation energy. Adding further
proton density near this same location gives rise to the high
electrostatic potential. Second, as one would expect from the
Coulomb-explosion of water, the alchemical potential is al-
ways positive, indicating that at no point in space does the
alchemical addition of an extra proton to the system favor the
protonation energy—-the energy of protonation increases as
protons are added.

The alchemical change we have considered is an increase in
the nuclear number of the central atom. At the same time, the
proton in a bonded H atom is eliminated so the total num-
ber of protons is constant over the sequence of alchemical
transformations, CH4 → NH3, NH3 → H2O, H2O→ HF, and
HF → Ne. The alchemical potential of protonation is posi-
tive for each of these molecules, but the alchemical deriva-
tive along these paths also includes the proton annihilation.
The change in protonation energy along these paths is the
difference in alchemical potentials at the central atom andat
the proton being removed. Figure 5 shows how the proto-
nation energies change along the alchemical transformations,
and how the difference in energy between the unfavorable ad-
dition of a proton at the center nucleus and the favorable H
annihilation can lead to a lower overall energy. Fractionalnu-
clei are treated using the numerical interpolations described in
Sec. II E so that energies can be calculated along the alchemi-
cal mutation.

2. Relaxed geometries

The effect of molecular relaxation is shown in Fig. 5 to
be particularly significant for the first transformation between
CH4 and NH3. There are two possible alchemical transfor-
mations between these molecules in a fixed geometry case
because the protonated CH+

5 molecule has symmetrically
nonequivalent protons, those which are neighboring the pro-
tonating H+ and those which are not. The two different al-
chemical paths correspond to which type of proton is being
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annihilated. Upon relaxation, the asymmetry is removed as
the molecules move to a single minimum energy structure. As
one would expect, the difference between the fixed-geometry
and relaxed-geometry paths are most significant for molecules
which are highly strained, such as the NH+

4 endpoint of the
first transition. In the subsequent transitions, the fixed and
relaxed geometries are much closer. As in the case of ammo-
nia inversion, there is a significant curvature in the alchemical
paths which reduces the predictive quality of the alchemical
derivatives for integer changes inNI .

C. Alchemical potentials

To separate and validate the derivatives in Eq. (2) we fo-
cus only on the alchemical term,∂λE =

R

dr µn(r)∂λZ(r), as
specified in Eq. (3). This is accomplished by choosing a sys-
tem whereNe is constant, i.e.∂λNe = 0. The second term in
Eq. (2) is also zeroed by relaxing the ions along the path so
{FI} = 0. We have a particular interest in validating the ana-
lytical calculation of∆µn,I from Eq. (7) because it is from this
calculation that∂λ∆E depends, to first order.

In this study, every transforming path involves the alchemi-
cal mutation of two atoms, the simultaneous annihilation ofa
proton in a hydrogen atom and the increase of the atomic num-
ber of a central atom to which it is bound. As such, Eq. (9) is
only non-zero for changes at the central atom and the annihi-
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FIG. 6: Correlation of the analytical [Eq. (9)] and numerical
[Eq. (13)] alchemical derivatives∆µn,H ∂λNH and∆µn,c ∂λNc, for all
paths and all values ofλ. The inset shows a similar correlation for the
sum of these atomic components, which give derivatives of the bind-
ing and activation energies along the alchemical paths in Table I.

lated hydrogen and reduces to∂λE = ∆µn,H ∂λNH+∆µn,c∂λNc,
where H and c indicate the hydrogen and central atom, respec-
tively. For our linear transformations,∂λNc = −∂λNH = 1.

In Fig. 6 the accuracy of the individual terms∆µn,H ∂λNH
and ∆µn,c∂λNc are compared separately to finite difference
derivatives inλ as obtained from Eq. (13). The data is for
all paths at each intermediateλ values considered for this
study. For the two applications, barrier and reaction enthalpy,
we have computed the alchemical potential terms according to
Eqs. (10, 12). We find a correlation with a root-mean-square
deviation of 0.29 eV for the barriers, and 0.26 eV (fixed-
geometry) and 0.44 eV (relaxed-geometry) for the reaction
enthalpies. The remaining deviation from the finite difference
results is most likely due to the pseudopotential interpolation
used to calculate∆NI

∆λ which is not the same as the analytical
∂λZ. Nonetheless, the pseudopotential is designed to model an
atom with atomic numberZ, so that linear changes in the pseu-
dopotential are a reasonable approximation to linear changes
in Z.

D. Oxygen binding on a Pd nanoparticle

For the alchemical potential to be useful for rational com-
pound design it must be predictive for changes in the property
of interest between real materials. Consequently, the poten-
tial must be sufficiently accurate in predicting changes to the
property, and ideally the property should depend linearly on
NI . The numerical accuracy of the analytical alchemical po-
tential has been demonstrated in the previous sections. Here,
we address the predictive quality for the binding of molecular
oxygen to the hollow site in the center of the (111) face of a
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FIG. 7: The alchemical potentialµbind
n,I , calculated from Eqs. (8,17),

for the binding of O to a 79 atom Pd nanoparticle. Colors repre-
sent the value of the alchemical potential on each atom. To weaken
oxygen binding atoms colored in red should be changed to the more
noble Ag and atoms colored in blue should be changed to Rh. The
opposite transformations should be made to strengthen the oxygen
bond.

79 atom Pd nanoparticle. The property can be expressed in
the form of Eq. (11) as

Ebind = EPd79+O−EPd79−
1
2

EO2. (17)

As in the previous examples, we isolate the first, nuclear term
of Eq. (2) by relaxing all geometries ({FI} = 0), and by per-
forming exclusively iso-electronic changes (dNe = 0). We
constrain all transitions to charge neutral paths by pairing the
addition of a proton to any nucleus with the removal of a pro-
ton from a second nucleus in the system. Furthermore, we re-
strict ourselves to all geometrically stable and complementary
mutant pairs with D4h-symmetry as illustrated in right hand
panel of Figure 8.

Figure 7 shows the alchemical potential for the binding en-
ergy of oxygen to the nanoparticle. The extreme values for
µbind

n,I are on the (111) face where the O-atom binds; they fall
off with distance from the binding site. If the goal is to tune
the binding energy to a desired value,µbind

n,I can be used to de-
cide which atoms in the system to alchemically change and
in what direction. The best pure-metal for the oxygen reduc-
tion reaction is Pt, which binds O more weakly than Pd. To
weaken the binding, Fig. 7 shows that the atoms directly at
the binding site should be made more noble by increasingNI .
Alternatively, the second-neighbors can be made less noble
by decreasingNI , which is consistent with the ligand effect of
near surface alloys [35–37].

Figure 8 shows the correlation between the actual change
in calculated binding energy due to mutation,∆Ebind, and the
predicted change in binding energy,∂λEbinddλ for dλ = 1,
based on the sum over alchemical potentials in Eq. (9). Final
structures A and B have 24, structures C-H have 48, and struc-
tures I-J have 72, nuclei alchemically changed from the initial
79 atom Pd particle, respectively. All actual changes have
been obtained for geometrically relaxed complexes. The cor-
relation between the prediction from the alchemical potential
evaluated at the initial Pd particle and the calculated change in
O binding for the alchemically modified final particles is very
reasonable. Even for changes of up to 72 of the 79 atoms in the
Pd particle, the alchemical potentials give a decent prediction
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FIG. 8: Correlation of alchemically predicted changes,∂λEbinddλ for
dλ = 1, with actual changes to the binding energy,∆Ebind, of molec-
ular oxygen to a 79 atom Pd cluster (initial) due to integer variations
in atomic numbers (final). The final systems correspond to comple-
mentary mutant pairs with D4h-symmetry.

for the change in the O binding energy. We emphasize that
the computational cost for obtaining the predicted changesin
binding energy correspond to a single evaluation of the bind-
ing energy for oxygen to the initial 79 atom Pd cluster. Albeit
higher order terms in{ZI} and{RI} of the Taylor expansion
in Eq. (1) could be used to improve the correlation, their as-
sociated computational cost to evaluate the response density,
e.g. within linear response theory [38, 39], defeats the origi-
nal purpose of leveraging exclusively analytical gradients al-
together.

V. CONCLUSIONS

We have presented numerical evidence that accurate ana-
lytical derivatives can be computed for chemical properties
that involve variations in geometry. While test systems show
some non-linearity in the alchemical paths, the derivatives can
be predictive for integer changes in the number of protons as
seen in the binding energy of oxygen to a Pd nanoparticle.
Furthermore, once the the property of interest has been cal-
culated for the initial compound, the corresponding alchemi-
cal derivative can be evaluated with negligible additionalcost.
Then, the effect of alchemical changes throughout the system
can be estimated without doing additional calculations forall
the various possible final compounds. We note that all the
alchemical derivatives required for the results that we report
and discuss in Section IV D are in the standard output of the
employed computer code VASP [28, 29]. This is a promising
initial step towards the use of alchemical derivatives for the
gradient-based optimization of materials.

On a more fundamental level, this study has shown how
to deal at the electronic structure level with geometrically de-



pendent properties of systems that are subjected to alchemical
changes. Consequently, it appears also possible to calculate
the predicted effects of alchemical changes on finite tempera-
ture dependent properties, such as free energies of bindingor
barriers, with insignificant computational overhead, using sta-
tistical mechanical sampling methods of phase space, e.g.ab
initio molecular dynamics [40].
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